职称:教授,博士生、硕士生导师
邮箱:guoqiang.tang@whu.edu.cn
个人网站:https://www.researchgate.net/profile/Guoqiang-Tang
招收博士和硕士研究生,欢迎博士后合作。
研究领域及招生方向:
长期从事水文气象、卫星降水、水文和陆面模型、人工智能、集合气象数据等领域的研究,在国际权威期刊发表SCI论文70余篇,获5000余次引用,担任中科院1区TOP期刊Journal of Hydrology副主编,入选国家级高层次青年人才。
招收水文水资源、人工智能、遥感和地球科学等领域的博士和硕士研究生,招聘博士后,欢迎有志者咨询和加盟。
教育背景:
2010.09-2014.07 清华大学 水利水电工程系,本科
2014.09-2019.07 清华大学 水利水电工程系,博士
工作经历:
2019.09-2022.10 加拿大萨斯喀彻温大学 全球水安全研究所,博士后
2022.10-2023.02 美国国家大气研究中心 陆面科学部,博士后
2023.02-2025.01 美国国家大气研究中心 陆面科学部,项目科学家
2025.02-至今 武汉大学 水利水电学院,教授
代表性科研项目:
(1) 国家自然科学基金优秀青年科学基金(海外),2025-2028,主持
(2) 湖北省拔尖创新人才项目,2025,主持
(3) 美国国家海洋和大气管理局(NOAA),美国新一代多概率格点降水数据集及综合降水事件数据库,2023.05-2026.12,374万,Co-I
(4) 美国陆军工程兵团(USACE),气候预测中的水文不确定性约束,2022.05-2025.04,391万,参与
(5) 加拿大第一研究卓越基金(CFREF),全球水未来项目,2015.01-2018.12,4.1亿,参与
(6) 国家自然科学基金重点项目,青藏高原地-空多源降水和总储水量反演同化及其在区域水循环研究中的应用,2015.01-2018.12,400万,参与
(7) 国家自然科学基金国际合作项目,极端气候下中国水资源对粮食安全影响的风险评估和弹性对策研究,2015.01-2019.12,220万,参与
学术兼职:
Journal of Hydrology(中科院1区TOP)副主编
Frontiers in Water副主编
Water Resources Research、Journal of Geophysical Research: Atmospheres、Earth and Space Science等期刊客座编辑
美国大气和海洋管理局(NOAA)COM降水工作组共同负责人
美国地球物理联合会(AGU)分会召集人(2020-2024)
Nature Water等期刊审稿人(100余次)
美国国家科学基金会(NSF)评审人
奖励与荣誉:
(1) 国家级高层次青年人才,2024
(2) Water Resources Research Editor’s Highlight,2023
(3) 北京市优秀毕业生,2019
(4) 清华大学优秀博士毕业生、清华大学优秀博士论文,2019
(5) 清华大学一二·九奖学金,2018
(6) 研究生国家奖学金,2015、2016、2017、2018
代表性学术成果:
已发表约80篇SCI论文(36篇一作/通讯)、7篇中文论文、5部专著章节,被引5000余次。
1. Tang, G.*, Clark, M. P., Knoben, W. J., Liu, H., Gharari, S., Arnal, L., ... & Papalexiou, S. M. (2025). Uncertainty hotspots in global hydrologic modeling: the impact of precipitation and temperature forcings. Bulletin of the American Meteorological Society, 106(1), E146-E166.
2. Tang, G.*, Wood, A. W., Newman, A. J., Clark, M. P., and Papalexiou, S. M. (2024). GPEP v1.0: a Geospatial Probabilistic Estimation Package to support Earth Science applications, Geoscientific Model Development, 17(3), 1153-1173.
3. Tang, G.*, Clark, M. P., Knoben, W. J., Liu, H., Gharari, S., Arnal, L., ... & Papalexiou, S. M. (2023). The impact of meteorological forcing uncertainty on hydrological modeling: A global analysis of cryosphere basins. Water Resources Research, e2022WR033767.
4. Tang, G.*, Clark, M. P., & Papalexiou, S. M. (2022). EM-Earth: The Ensemble Meteorological Dataset for Planet Earth. Bulletin of the American Meteorological Society, 103(4), E996-E1018.
5. Tang, G.*, Clark, M. P., Papalexiou, S. M., Newman, A. J., Wood, A. W., Brunet, D., & Whitfield, P. H. (2021). EMDNA: an Ensemble Meteorological Dataset for North America. Earth System Science Data, 13(7), 3337-3362.
6. Tang, G.*, Clark, M. P., & Papalexiou, S. M. (2021). SC-Earth: A Station-Based Serially Complete Earth Dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511.
7. Tang, G.*, Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., & Whitfield, P. H. (2020). SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018. Earth System Science Data. 12(4), 2381-2409.
8. Tang, G.*, Clark, M. P., Papalexiou, S. M., Ma, Z., & Hong, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697.
9. Tang, G.* (2020). Characterization of the Systematic and Random Errors in Satellite Precipitation Using the Multiplicative Error Model. IEEE Transactions on Geoscience and Remote Sensing, 59(7), 5407-5416.
10. Tang, G., Long, D., Hong, Y., Gao, J., and Wan, W. (2018), Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars, Remote Sensing of Environment, 208, 82-96.
11. Tang, G., Behrangi, A., Long, D., Li, C., Hong, Y. (2018), Exploring deep neural networks to retrieve rain and snow in high latitudes using multi-sensor and reanalysis data. Water Resources Research, 2018, 54(10): 8253-8278.
12. Tang, G., Behrangi, A., Long, D., Li, C., and Hong, Y. (2018), Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products, Journal of Hydrology, 559, 294-306.
13. Tang, G., Wen, Y., Gao, J., Long, D., Ma, Y., Wan, W., and Hong, Y. (2017), Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation, Water Resources Research, 53(5), 3835-3853.
14. Tang, G., Ma, Y., Long, D., Zhong, L., and Hong, Y. (2016), Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales, Journal of Hydrology, 533, 152-167.
15. Xu, Y., Tang, G.*, Li, L., & Wan, W. (2024). Multi-source precipitation estimation using machine learning: Clarification and benchmarking. Journal of Hydrology, 635, 131195.
16. Wang, T., Li, Z., Ma, Z., Gao, Z. and Tang, G.*, 2023. Diverging identifications of extreme precipitation events from satellite observations and reanalysis products: A global perspective based on an object-tracking method. Remote Sensing of Environment, 288, p.113490.
17. Wang, C., Tang, G.*, Xiong, W., Ma, Z., Zhu, S. Infrared Precipitation Estimation using Convolutional neural network for FengYun satellites. (2021) Journal of Hydrology. 603, 127113.
18. Wang, C., Tang, G.*, & Gentine, P. PrecipGAN: Merging Microwave and Infrared Data for Satellite Precipitation Estimation using Generative Adversarial Network. Geophysical Research Letters, 2021, e2020GL092032.
19. Lu, X., Tang, G.*, Liu, X., Wang, X., Liu, Y., & Wei, M. (2021). The potential and uncertainty of triple collocation in assessing satellite precipitation products in Central Asia. Atmospheric Research, 252, 105452.
20. Wang, T., & Tang, G.* (2020). Spatial Variability and Linkage Between Extreme Convections and Extreme Precipitation Revealed by 22‐Year Space‐Borne Precipitation Radar Data. Geophysical Research Letters, 47(12), e2020GL088437.
21. Lyu, F., Tang, G.*, Behrangi, A., Wang, T., Tan, X., Ma, Z., & Xiong, W. (2020). Precipitation Merging Based on the Triple Collocation Method Across Mainland China. IEEE Transactions on Geoscience and Remote Sensing. 59(4), 3161-3176.
22. Wang, C., Xu, J., Tang, G.*, Yang, Y., & Hong, Y. (2020). Infrared Precipitation Estimation Using Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing. 58(12), 8612-8625.
23. Lu, X., Tang, G.*, Wang, X., Liu, Y., Wei, M., & Zhang, Y. (2020). The Development of a Two-Step Merging and Downscaling Method for Satellite Precipitation Products. Remote Sensing, 12(3), 398.
24. Lu, X., Tang, G.*, Wang, X., Liu, Y., Jia, L., Xie, G., ... & Zhang, Y. (2019). Correcting GPM IMERG precipitation data over the Tianshan Mountains in China. Journal of Hydrology, 575, 1239-1252.
25. Li, C., Tang, G.*, and Hong, Y.* (2018), Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China, Journal of Hydrology, 562, 71-83.
地址:武汉市武昌区东湖南路8号电话:027-68772215学院邮箱:sdxy@whu.edu.cn
Copyright © 武汉大学水利水电学院