首页 > 师资队伍 > 水文水资源系 > 副教授 > 正文
           
           

尹家波

职称:副教授,硕士生导师(学术学位、专业学位)

邮箱:jboyn@whu.edu.cn; jiabo.yin@ouce.ox.ac.uk

个人网站:https://www.geog.ox.ac.uk/staff/jyin.html

研究领域及招生方向

研究方向:全球及区域水循环、碳循环、陆地生态系统碳汇、全球变化水文学、大气动力学、植被遥感、机器学习与水文预报等

招生专业:水文水资源、土木水利

招生类型:学术学位硕士、专业学位硕士

教育背景

2007.09-2010.06 湖北省华中师范大学第一附属中学 中学

2010.09-2014.06 武汉大学 水利水电工程全英文试验班 本科

2014.09-2016.06 武汉大学 水利工程 硕士

2016.09-2019.06 武汉大学 水文学及水资源 博士

2017.09-2018.10 美国哥伦比亚大学 地球科学系 联合培养博士

工作经历

2019.07-2021.12 武汉大学水利水电学院, 副研究员

2022.01-至今 武汉大学水利水电学院 副教授

2022.10-至今 英国牛津大学 Honorary Research Associate

2023.9-至今 瑞士苏黎世联邦理工学院(ETH) Visiting Scholar

开设课程

承担的本科生/研究生课程:

《自然科学经典导引》《气象与气候学》《城市水文学》《碳排放权交易概论》《全球变化与水碳循环研究前沿》

指导的大学生创新创业训练项目:

[1] 2023年国家级大学生创新创业训练计划项目. 基于卫星遥感与机器学习的大尺度气候风险评估. 2022.9-2023.8.(优秀结题)

[2] 2023年国家级大学生创新创业训练计划项目,面向“碳中和”目标的气候适应和生态固碳技术. 2022.9-2023.8.(优秀结题)

[3] 2024年国家级大学生创新创业训练计划项目,面向“双碳”战略目标的大尺度气候灾害预测及陆地生态系统碳汇失衡风险. 2023.9-2024.8.(教育部重点培育项目)

[4] 2024年国家级大学生创新创业训练计划项目,基于人工智能-水文过程耦合模型的全球洪水及其社会经济风险预估. 2023.9-2024.8.

代表性科研项目

[1] 国家自然科学基金委员会,国际合作研究项目,“全球南方”旱区热浪-干旱复合灾害对气候变化的响应机理及其生态风险, 2024-01-01至2026-12-31.(主持)

[2] 国家自然科学基金委员会, 专项项目, 52242904, 面向长江中游典型城市群青少年的“碳中和”科学传播, 2023-01-01 至 2023-12-31.(主持)

[3] 国家自然科学基金委员会,青年科学基金项目,长江流域洪水对气候变化的热动力学响应机理及迁移路径研究, 2020-01-01至2023-12-31.(主持)

[4] 湖北省自然科学基金杰出青年项目,湖北省热浪-干旱复合灾害的形成机理及其碳汇效应,2024-03-01至2027-03-01.(主持)

[5] 中国博士后创新人才支持计划项目,气候变化对洪水的热动力学作用机理及社会经济影响, 2020-01-01至2021-12-31.(主持)

[6] 湖北省自然科学基金青年项目,清江梯级水库运行期汛控水位及其不确定性研究, 2020-01-01至2021-12-31.(主持)

[7] “十四五”国家重点研发计划项目课题三, 适应多限定性约束和多级供水目标的水工程协同水资源调度技术, 2021-12-01至2025-11-30.(专题负责人)

[8] 中央高校基本科研业务费专项拔尖创新人才I类培育项目,大气热力与动力机制对极端水文事件的影响及其社会经济风险, 2022-01-01至2023-12-31. (主持)

[9] 巢湖生物资源调查及生态修复示范工程(基础调查研究部分)课题,巢湖长系列径流逐月逐旬回溯模拟研究,2020-01-01至2022-12-31.(主持)

[10] 长江委水文局委托项目,长江流域跨省河流水资源量预报技术应用分析,2020-01-01至2021-12-31.(主持)

[11] 流域水资源与生态环境科学湖北省重点实验室开放基金,基于多源遥感的长江上游水文干旱演变归因及未来风险预估,2024-01-01至2025-12-30. (主持)

[12] 智慧长江与水电科学湖北省重点实验室开放基金,长江流域极端降水对气候变化的响应机理及洪水效应,2024-01-01至2025-12-30. (主持)

[13] 新疆干旱区水循环与水利用重点实验室开放基金,中国旱区水文干旱演变的气候归因及未来重现规律预估,2023.10-2026.9. (主持)

主要教育教学改革项目

[1] 武汉大学本科教育质量建设综合改革子项目. 面向“双碳”战略目标的水利类本科生创新创业能力培养模式探索. 2023.1-2024.12. (主持)

[2] 武汉大学研究生研究学分课程建设项目. 全球变化与水碳循环研究前沿. 2023.1-2024.12. (主持)

[3] 武汉大学研究生导师育人方式创新项目. 面向“双碳”战略目标的水利类研究生创新创业能力培养模式探索. 2023.1-2024.12. (主持)

[4] 武汉大学学位与研究生教育教学改革项目. “新工科”背景下土木水利专业学位研究生拔尖创新人才培养模式研究. 2022.1-2023.12. (主持)

学术兼职

2024.4-至今 Journal of Environmental Management(TOP期刊,IF=8.9) Editor(领域主编)

2024.5-至今 The Innovation(Cell集团子刊,IF=33.1) Youth Editor

2024-至今 Discover Water(Springer Nature)和《水力发电学报》等6个国内外期刊(青年)编委

2021-至今 China Africa Water Association青年委员会 秘书长

2022-至今 长江技术经济学会青年工作委员会 副秘书长

2022-至今 国际水文科学协会中国委员会(CNC-IAHS)统计水文分委会委员

期刊审稿人:Nature、Science Advances、Nature Communications、One Earth、Geophysical Research Letters、Hydrology and Earth System Sciences、Earth’s Future、Advances in Water Resources等40余个SCI期刊。

奖励与荣誉

主要学术奖励:

[1] 湖北省实验室十大亮点科技成果 (2024,排名1)

[2] Wiley中国开放科学高贡献作者奖 (2024,排名1)

[3] 第二届全国水利类优秀博士学位论文 (2021,排名1)

[4] Water Resources Research 2021 Editors’ Choice Awards (2022,排名1)

[5] 全国零碳科技十佳萃选学术论著 (2022,排名1)

[6] 中国水利青年科技论文(英文)竞赛第一名 (2021,排名1)

[7] Nature Communications 地球与行星科学TOP50 学术论文 (2019,排名1)

[8] 湖北省科技进步一等奖 (2020,排名10)

[9] 长江科学技术奖二等奖 (2020,排名4)

[10] 大禹水利科学技术奖三等奖 (2020,排名8)

[11] 美国Committee of 100英才奖 (2016,排名1)

[12] 武汉大学研究生十大学术之星、武汉大学十大杰出青年、武汉大学优秀研究生标兵等

指导本科生/研究生获得的主要奖励:

全球水论坛本科生组第一名、湖北省大学生“互联网+”创新创业大赛银奖、湖北省“挑战杯”课外科技竞赛二等奖、武汉大学优秀学士学位论文(杨远航、康圣屿)、全国大学生节能减排大赛三等奖等20余项

代表性学术成果

代表性论文:

[1] Yin J*, Gentine P, Slater L, et al. (2023). Future socio-ecosystem productivity threatened by compound drought-heatwave events[J]. Nature Sustainability. 6: 259-272.(亮点论文,IF=27.6)

[2] Yin J*, Slater L. (2023). Increase in drought-heatwave events worsens socioeconomic productivity and carbon uptake [J]. Nature Sustainability. (News & Views) 6:241-242.

[3] Gu L, Yin J*, Gentine P, et al. (2023). Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics. Nature Communications 14: 3197.

[4] Yin J, Gentine P, Zhou S, et al. (2018). Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nature Communications 9: 4389.

[5] Yin J, Gentine P, Guo S, et al. (2019). Reply to increases in temperature do not translate to increased flooding. Nature Communications 10: 5675. (Matters Arising)

[6] Chai Y, Yue Y, Slater L, Yin J, Borthwick A, Chen T, Wang G. (2022). Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia. Nature Communications 13: 4124.

[7] Lin J, Bryan B, Zhou X,…,Yin J, et al. (2023). Making China’s water data accessible, usable and shareable. Nature Water (Perspective) 1: 328-335.

[8] Yin J*, Slater L, Gu L, Liao Z, Guo S, Gentine P. (2022). Global increases in lethal compound heat stress-hydrological drought hazards under climate change. Geophysical Research Letters 49(18): e2022GL100880.

[9] Yin J, Guo S, Gentine P, et al. (2021). Does the hook structure constrain future flood intensification under anthropogenic climate warming?. Water Resources Research 57: e2020WR028491. (Editors’ Choice Awards)

[10] Yin J*, Slater L, Khouakhi A, et al. (2023). GTWS-MLrec: Global terrestrial water storage reconstruction by machine learning from 1940 to present. Earth System Science Data 15(12):5597-5615.

[11] Yin J*, Slater L, Liu P et al. (2024). Socio-economic inequality exacerbated by climate change. The Innovation Geoscience 2(3): 100078.

[12] Yin J* & Slater L. (2023). Understanding heatwave-drought compound hazards and impacts on socio-ecosystems. The Innovation Geoscience 1(3): 100042.

[13] Yin J, Guo S, Wang J, et al. (2023). Thermodynamic driving mechanisms for the formation of global precipitation extremes and ecohydrological effects. Science China Earth Sciences 66: 92-110.

[14] Yin J, Guo S, Yang Y, et al. (2022). Projection of droughts and their socioeconomic exposures based on terrestrial water storage anomaly over China. Science China Earth Sciences 65(9): 1772-1787.

[15] Huang X, Yin J*, Slater L J, et al. (2024). Global projection of flood risk with a bivariate framework under 1.5–3.0 C warming levels. Earth's Future 12(4): e2023EF004312.

[16] Yang Y, Yin J*, Slater, et al. (2024). Quantifying the drivers of terrestrial drought and water stress impacts on carbon uptake in China. Agricultural and Forest Meteorology 344: 109817.

[17] Fang L, Yin J*, Wang Y, et al. (2024). Machine learning and copula-based analysis of past changes in global droughts and socioeconomic exposures. Journal of Hydrology. 628: 130536.

[18] Liu R, Yin J*, Slater L, et al. (2024). Machine learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks. Hydrology and Earth System Science. https://hess.copernicus.org/preprints/hess-2023-181/.

[19] Gu L, Yin J*, Slater L, et al. (2023). Intensification of global hydrological droughts under anthropogenic climate warming. Water Resources Research 59(1): e2022WR032997.

[20] Gu L, Chen J*, Yin J*, et al. (2022). Global increases in compound flood-hot extreme hazards under climate warming. Geophysical Research Letters 49: e2022GL097726.

[21] Kang S, Yin J*, Yang Y, et al. (2023). Machine learning-constrained projection of flood risks and socioeconomic exposure in China. Earth’s Future 11(7): e2022EF003308.

[22] Tian B, Chen H*, Yin J*, et al. (2023). Global scaling of precipitation extremes using near-surface air temperature and dew point temperature. Environmental Research Letters 18(3): 034016.

[23] Gu L, Yin J*, Wang S, et al. (2023). How well do the multi-satellite and atmospheric reanalysis products perform in hydrological modelling. Journal of Hydrology 617: 128920.

[24] Bustamante M, Roy J, Ospina D,..., Yin J, Zscheischler J. (2024). Ten New Insights in Climate Science 2023/2024. Global Sustainability https://doi.org/10.1017/sus.2023.25

[25] Liu J, Chen J, Yin J, et al. (2024). Understanding compound extreme precipitations preconditioned by heatwaves over China under climate change. Environmental Research Letters. 19: 064077.

[26] Zhao Y, Xiong L, Yin J, et al. (2024). Understanding the effects of flash drought on vegetation photosynthesis and potential drivers over China. Science of The Total Environment. 931:172926.

[27] Guan Y, Gu X, Slater L, Yin J, et al. (2023). Increase in ocean-onto-land droughts and their drivers under anthropogenic climate change. npj Climate and Atmospheric Science 6(1): 195.

[28] Wu Z, Liu D,…, Yin J, Zeng Y. (2023). A nonlinear model for evaluating dynamic resilience of water supply hydropower generation-environment conservation nexus system. Water Resources Research 59(11): e2023WR034922.

[29] Xiong J, Yin J, Guo S, et al. (2023). Using GRACE to Detect Groundwater Variation in North China Plain after South–North Water Diversion. Groundwater 61(3): 402-420.

[30] Wang R, Gentine P, Yin J, et al. (2021). Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces. Hydrology and Earth System Sciences 25:3805-3818.

[31] Xiong J, Yin J, Guo S, et al. (2022). Annual runoff coefficient variation in a changing environment: a global perspective. Environmental Research Letters 17(6): 064006

[32] Yin J, Guo SL, Gu L, et al. (2021). Blending multi-satellite, atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling. Journal of Hydrology 593, 125878.

[33] Gu L, Yin J*, Zhang H, Wang HM, Yang G, Wu X. (2021) On future flood magnitudes and estimation uncertainty across 151 catchments in mainland China. International Journal of Climatology 41(S1), E779-E800.

[34] Yin J, Guo S, Gu L, et al. (2020). Projected changes of bivariate flood quantiles considering sampling uncertainty based on multi-model ensembles over China. Journal of Hydrology 585: 124760.

[35] Gu L, Chen J*, Yin J*, et al. (2020). Responses of precipitation and runoff to climate warming and implications for future drought changes in China. Earth's Future 8(10): e2020EF001718.

[36] Gu L, Chen J*, Yin J*, Sullivan SC, Guo, S, Jong-Suk K. (2020). Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2° C warmer climates. Hydrology and Earth System Sciences 24(1): 451-472.

[37] Sullivan S, Schiro K, Yin J, Gentine P. (2020). Changes in tropical precipitation intensity with El Niño warming. Geophysical Research Letters 47(14), 1-9.

[38] Yin J, Guo S, He SK, et al. (2018). A copula-based analysis of projected climate changes to bivariate flood quantiles. Journal of Hydrology 566: 23-42.

[39] Yin J, Guo S, Liu ZJ, et al. (2018). Uncertainty Analysis of Bivariate Design Flood Estimation and its Impacts on Reservoir Routing. Water Resources Management 32: 1795-1809.

[40] Yin J, Guo S, Wu XS, et al. (2019). A meta-heuristic approach for multivariate design flood quantile estimation incorporating historical information. Hydrology Research 50 (2): 526-544.

[41] Yin J, Guo S, Liu ZJ, et al. (2017). Bivariate Seasonal Design Flood Estimation Based on Copulas. Journal of Hydrologic Engineering 22(12): 05017028.

[42] Xiong J, Guo S, Yin J, et al. (2022). A Novel Standardized Drought and Flood Potential Index Based on Reconstructed Daily GRACE Data. Journal of Hydrometeorology 23(9): 1419-1438.

[43] Slater L, Villarini G, Archfiled S, Faulkner D, Lamb R, Khouakhi A, Yin J. (2021). Global changes in 20-year, 50-year and 100-year river floods. Geophysical Research Letters 48: 2020GL091824.

[44] Xiong J, Yin J, Guo S, et al. (2021). Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites. Journal of Hydrology. 599: 126308.

[45] Xiong J, Yin J, Guo SL, et al. (2021). Integrated flood potential index for flood monitoring in the GRACE era. Journal of Hydrology. 603(2):127115.

[46] 尹家波,郭生练,王俊,等. (2023).全球极端降水的热力学驱动机理及生态水文效应.中国科学:地球科学. 53(1): 96-114.

[47] 尹家波,郭生练,顾磊,等. (2021).中国极端降水对气候变化的热力学响应机理及洪水效应.科学通报. 66(33): 4315-4325.

[48] 尹家波,郭生练,杨妍,等. (2022). 基于陆地水储量异常预估中国干旱及其社会经济暴露度. 中国科学:地球科学. 52(10): 2061-2076.

[49] 杨远航,尹家波*,郭生练,等. (2023). 中国陆域干旱演变预估及其生态水文效应. 科学通报. 68(07):817-829.

[50] 尹家波, 郭生练, 王俊, 等. (2020). 基于贝叶斯模式平均方法融合多源数据的水文模拟研究. 水利学报. 51(11):1335-1346.

[51] 尹家波, 郭生练, 吴旭树, 等. (2018). 两变量设计洪水估计的不确定性及其对水库防洪安全的影响. 水利学报. 49(06):715-724.

[52] 尹家波,郭生练,刘章君,等. (2017). 设计洪水峰量最可能组合法的计算通式. 工程科学与技术. 49(2): 69-76.

[53] 熊立华, 尹家波*,郭生练. (2023). 极端水文事件对气候变化的热力学响应研究进展与评价. 武汉大学学报(工学版). 56(12): 1432-1443.

[54] 尹家波,郭生练,刘章君,等. (2017). 分期设计洪水的估计区间. 武汉大学学报(工学版). 50(1): 18-24.

代表性发明专利(共50项)

[1] 尹家波,郭生练,于兵,等. 一种水文循环变异驱动下二维干旱灾害评估方法. 2022,国家发明专利,ZL202010691987.1(已授权)

[2] 尹家波,黄爔,杨远航,等. 水文循环变异驱动下的洪水风险预测方法. 2023,国家发明专利,ZL202210650913.2(已授权)

[3] 尹家波,郭生练,于兵,等. 一种融合卫星遥感和机器学习技术的流域水文模拟方法. 2022,国家发明专利,ZL 201910670559.8(已授权)

[4] 尹家波,郭生练,何绍坤,等. 基于机器学习融合多源遥感数据的水库调度规则优化方法. 2022,国家发明专利,ZL202110053303.X (已授权)

[5] 尹家波,郭生练,王俊,等. 基于动态启发式算法的多源降水产品的融合方法. 2022,国家发明专利,ZL202110096858.2 (已授权)

[6] 尹家波,郭生练,王俊,等. 一种基于贝叶斯模式平均融合多源数据的水文模拟方法. 2022,国家发明专利,ZL 202010691996.0(已授权)

[7] 尹家波, 张官正,陈杰,等. 一种集合气候模式下的分期设计洪水推求方法,2022. 国家发明专利,ZL201910433611.8(已授权)

[8] 尹家波,郭生练,顾磊,等. 基于气候模式集合的洪涝灾害社会经济暴露度的评估方法. 2022,国家发明专利,ZL202110110958.6(已授权)

[9] 尹家波,郭生练,王俊,等. 适用于缺资料地区的多变量设计洪水估计方法,2022,国家发明专利,ZL202110132725.6(已授权)

[10] 尹家波,郭生练,刘章君,等. 一种基于Copula函数的坝址洪水还原方法. 2017,国家发明专利,ZL201510159076.3(已授权)

地址:武汉市武昌区东湖南路8号电话:027-68772215院长邮箱:sdxy@whu.edu.cn

Copyright © 武汉大学水利水电学院